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SUMMARY 
In this study, a macroscopic transient heat transfer analysis of  the cooling process of the solid, based 
on the generalized lumped thermal capacitance approach is described. An analyzed macroscopic 
combined heat transfer by convection and radiation in the cooling process of the solid is modeled by 
using a generalized thermal lumped capacitance approximation with dynamic effective heat transfer 
coefficient for combined convective and radiative cooling. An exact analytical solution of analyzed 
combined transient heat transfer problem is done.  
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1. INTRODUCTION 
 
The lumped capacitance approach is a well known method of macroscopic transient processes 
analysis in the science and egineering because of its innate simplicity [1, 2]. In the area of a 
transient heat transfer processes analysis it assumes that the temperature in the material is 
spatially uniform at any instant of time during a heat transfer process, i.e. the temperature of 
material can be taken to be a function of time only. Heat transfer analysis which utilizes this 
theoretical idealization is applicable only when the Biot number (the ratio of internal thermal 
resistance within the material to external thermal resistance at its surface) is less than or equal 
to 0,1. The lumped thermal capacitance analysis is based on the solution of a first order 
differential total energy balance equation for the material which must relate the rate of heat 
loss at its surface, to the rate of change of the internal energy of material. The simplest 
lumped thermal capacitance model for the material regards only the convective heat transfer 
between the solid and its surroundings. For the homogeneous solid with constant physical, 
spatial and thermal properties, that is being cooled from the initial temperature T0 by a fluid 
with constant temperature T∞ at the constant convective heat transfer coefficient hc, the 
solution of the total energy balance differential equation has a form of an exponential 
temperature function 
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(1) 

 
 
which predicts a time history of the solid temperature during a cooling process. Quantities ρ, 
cp, V and S are density and specific heat of the solid material, volume and surface of the solid, 
respectivelly and t is a time variable. The quantity ρcpV/hcS is called the thermal time constant 
for the geometry and has dimensions of time. The numerator of the time constant is called 
lumped thermal capacitance of the solid, and the ratio 1/hcS is recognized as the convective 
resistance [3]. 
However, a more complex approach to the transient heat transfer problems solution offers a 
generalised lumped thermal capacitance model which allows for a combined heat tranfer by 
convection and radiation [4] what more accurately describes the real transient heat transfer 
phenomenon. The aim of the study is a more detailed analysis of such model for the material 
cooled by the fluid, because of just a cooling processes prediction plays very important role in 
many areas of science, research, material engineering, as well as in the industrial practice. 
 
 
2. GENERALIZED LUMPED CAPACITANCE MODEL 
 
The total energy balance equation for the solid cooled by combined heat transfer through 
convection with constant convective heat transfer coefficient hc and by radiation 
 

(2) 
 
 
represents an ordinary first order nonlinear nonhomogeneous differential equation without 
exact analytical solution for T(t), where ε is an emissivity coefficient of the solid surface and σ 
= 5,627.10 – 8 W.m – 2. K – 4 is Stefan-Boltzmann constant [5]. However, since 
 

(3) 
 
 
one can see, that if temperature difference T(t) – T∞ is resonably small compared to T∞, then 
 

(4) 
 
Consequently, energy balance equation (2) can be rewritten to the form of 
 

(5) 
 
 
where 
 

(6) 
 
is an constant effective coefficient for combined convective and radiative cooling and 
 

(7) 
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is a characteristic size of the solid. Following the relation (6) it can be concluded, that the  
cooling by radiation plays a major role only at such coolig conditions when the heat transfer 
coefficient corresponding to the pure convective cooling is not significantly greater than the 
value of quantity 4εσT∞3, i.e. at combined heat transfer by natural convection and radiation at 
temperatures greater then 0 °C. An exact analytical solution of the linear nonhomogeneous 
differential equation (5) has the analogical form as the exponential temperature funcion of 
simplest thermal lumped capacitance model (1) and it is aplicable at the same condition of the  
sufficiently small Biot number.  
 
 
3. DYNAMIC HEAT TRANSFER COEFFICIENT 
 
At greater temperature differences between solid and its surrounding the aproximation (6) can 
not be used. The effective coefficient for convective and radiative heat transfer h receives a 
form of temperature-dependent function 
 

(8) 
  
energy balance equation (5) loses its linear character and it has not exact analytical solution 
for T(t). Nevertheless, if the temperature dependence of effective heat transfer coefficient will 
be replaced by its dynamic character, i.e. by its time dependence in the heat transfer process, 
the equation (5) can be written as  
 

(9) 
  
 
with an analytical solution in the form of exponential temperature function of the generalized 
thermal lumped capacitance model 
 

(10) 
 

 
In the temperature range where the dynamic character of effective heat transfer coefficient can 
be described by a linearly decreasing function of the time  
 

(11) 
 
with constant coefficients p0 and p1 [6], the temperature function (10) has a form of 
 

(12) 
 

 
At the same time, the coefficient p0 represents an initial value of the effective heat transfer 
coefficient  
 

(13) 
 
i.e. the value in the time instant t0 at temperature T0, while in 
 

(14) 
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is its constant decay factor calculated for entire time of heat transfer process  tf, or in entire 
temperature interval [T0, T∞]. However, the time window or temperature interval for the 
calculation of p1 coefficient can have an optional length. 
For an arbitrary polynomial time dependence of combined heat transfer coefficient with a 
decreasing trend the equation (10) goes to 
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with exact analytical solution solution in the form of temperature functions 
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where n is the degree of plynomial. 
The temperature functions of generalized lumped thermal capacitance model (16) allowe to 
predict analytically temperature of the solid at any instant of its coolig process, alternatively 
to determine the time needed to reach its required temperature. For  p1 = 0,  i.e. in the case of 
constant heat transfer coefficients it has the analogical form as the temperature function of 
simplest lumped thermal capacitance model (1). It stands to reson that temperature functions 
(16) are able to describe analytically the cooled solid temperature-time history for a relatively 
wide range of  temperature differences T0 – T∞ [7]. Additionally, the analytical model (16) 
enables experimental estimation of combined heat transfer coefficient, e.g. by the application 
of sequential methods [8]. 
 
 
4. CONCLUSION 
 
The described approach to solution of the total energy balance diffrential equation for the 
solid cooled by combined heat transfer through convection and radiation using the dynamic 
combined heat transfer coefficient representation, instead of its temperature dependence, 
makes it possible to obtain the analytical model for transient heat transfer analysis of cooling 
process of the solid through generalized lumped thermal capacitance approach.  
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